Journal of Organometallic Chemistry, 165 (1979) 107–116 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

HYDRIDOCYANOALKYL COMPLEXES OF PLATINUM(II). INSERTION OF OLEFINS INTO THE Pt-H BOND

RENZO ROS,

Facoltà di Chimica Industriale, University of Venice (Italy)

RINO A. MICHELIN,

Centro di Chimica e Tecnologia Composti Metallorganici Elementi Transizione, Facoltà di . Ingegneria, University of Padua (Italy)

RAYMOND BATAILLARD and RAYMOND ROULET *

Institut de Chimie Minérale et Analytique de l'Université, Place du Château 3, 1005 Lausanne (Switzerland)

(Received June 29th, 1978)

Summary

The preparation and spectroscopic properties are described of some platinum(II) complexes having a hydride ligand *cis* or *trans* to an sp^3 carbon, viz. *trans*-PtH-(YCN)(PPh₃)₂ and *cis*-PtH(YCN)(L-L) with YCN = C₂H₄CN, n-C₃H₆CN, *o*-CH₂C₆H₄CN and L-L = bis(diphenylphosphino)-ethene or -ethane. The complexes *trans*-PtH(YCN)(PPh₃)₂ can add a fifth ligand in solution; the resulting five-coordinate complex was observed by ³¹P NMR in the case of PtH(C₃H₆CN)-(PPh₃)₃. Insertion of olefin (ethene, 1-cyanoethene, norbornadiene, allene) into the Pt-H bond of the *trans*-hydrido complexes occurs to give *cis*-dialkyl complexes, but the *cis*-hydrido complexes are unreactive. The mechanism of insertion is discussed in terms of the kinetics and the geometries of reactants and products.

Introduction

Several studies on hydrido and alkyl complexes of platinum(II) have shed light on the mechanism of olefin insertion into the Pt—H bond [1—5], on π -complex formation [6], and on ligand elimination reactions [7—11]. Complexes of the type PtH(R)L₂ contain a hydride and an alkyl ligand, and are thought to be intermediates in the catalytic activation of C—H bonds [12]. These complexes are generally unstable, and only a few have been sofar isolated [13—17]. We recently reported the preparation of hydridocyanomethyl complexes trans-PtH(CH₂CN)(PPh₃)₂ and cis-PtH(CH₂CN)(L-L) (L-L = diphosphine, diarsine) [16] and thought they would be good subjects for a study of olefin insertion into a Pt-H bond for three reasons: (i) the complexes PtHXL₂ used so far contain a rather weakly bonded fourth ligand (X = Cl, NO₃, acetone, etc.); this increases the number of available coordination sites for the entering olefin and the role of the solvent in the overall process, whereas in PtH(YCN)L₂ the fourth ligand is the strongly bonded cyanoalkyl, which cannot be reversibly displaced, (ii) the cis-complexes bear a bidentate ligand whose dissociation should be entropically disfavored and which should preclude problems of cis-trans-isomerization, and (iii) the complexes contain an NMR probe (³¹P) to aid the search for intermediates and an IR probe (the CN group) for the detection of eventual elimination products.

We report now the preparation and spectroscopic properties of hydridocyanoalkyl complexes PtH(YCN)L₂ (YCN = C_2H_4CN , n- C_3H_6CN , o- $CH_2C_6H_4CN$; L₂ = (PPh₃)₂, Ph₂PCH=CHPPh₂, Ph₂PC₂H₄PPh₂) and the results of an NMR study of their reaction with olefins. The reactions with other nucleophiles have been described elsewhere [16].

Results and discussion

The complexes *trans*-PtH(YCN)(PPh₃)₂ were obtained by treating *trans*-PtX-(YCN)(PPh₃)₂ (X = Cl, Br) with NaBH₄ in warm ethanol or, in the case of YCN = n-C₃H₆CN, by heating the cationic derivative *trans*-[Pt(n-C₃H₆CN)-(PPh₃)₂]_m(BF₄)_m [18] with methanolic NaOH. *cis*-Hydrido complexes were prepared by displacing triphenylphosphine from *trans*-PtH(YCN)(PPh₃)₂ by various diphosphines, or by displacing PPh₃ from *trans*-PtX(YCN)(PPh₃)₂ by a diphosphine and treating the product with NaBH₄ in ethanol.

No insertion of olefins into the Pt—H bond of the *cis* complexes occurred, whereas the *trans*-hydrido complexes reacted cleanly with olefins (ethene, acrylonitrile, norbornadiene and allene), yielding the corresponding dialkyl complexes as the sole products. (No elimination of cyanoalkanes was observed when the reaction was monitored by IR and GLC.) (Scheme 1).

The complexes were characterized by ¹H and ³¹P NMR spectra (Table 1), IR spectra and elemental analyses (Table 2). The hydrido complexes VIa–VIIId are white crystalline solids stable in air, soluble in benzene and chloroalkanes, and insoluble in alcohols. The *trans*-geometry of VIa [16] and VIb, VIc is deduced from their NMR spectra: a triplet for the hydride resonance due to coupling with two equivalent phosphorus nuclei, and a single ³¹P resonance (with additional coupling due to ¹⁹⁵Pt). All the other hydrido complexes VIIa–VIIId, as well as the dialkyl complexes Xa–XIIIa have a *cis*-geometry: the ³¹P [¹H] FT NMR spectra show two doublets. For VIIIa–VIIId, the resonance attributed to the phosphorus atom *trans* to the hydride ligand is that associated with a large additional ²J(PPtH) of ca. 200 Hz in the coupled ³¹P NMR spectra. Comparison of the coupling constants ¹J(PtP) shows that the *trans*-influence of the hydride is about the same as that of a cyanoalkyl ligand. The comparison of related coupling constants ¹J(PtP), as well as of ¹J(PtH) and ν (PtH), leads

Compound	x	L-L	YCN	Reference	
Ia	Cl		CH ₂ CN	18	
Ib	Br		C_2H_4CN	18	
Ic	Br		n-C ₃ H ₆ CN	18	
Id	Cl, Br		o-CH2C6H4CN	19	
Ila	Cl	cis-Ph2PCH=CHPPh2	CH ₂ CN	16	
IIb	Cl	cis-Ph2PCH=CHPPh2	C ₂ H ₄ CN	this work	
Ile	Cl, Br	cis-Ph2PCH=CHPPh2	n-C3H6CN	this work	
IId	CI	cis-Ph2PCH=CHPPh2	o-CH2C6H4CN	19	
IIIa	Cl	Ph ₂ PC ₂ H ₄ PPh ₂	CH ₂ CN	16. 20	
IIIb	Cl, Br	Ph2PC2H4PPh2	C ₂ H ₄ CN	this work	
Illc	Cl, Br	Ph2PC2H4PPh2	n-C3H6CN	this work	
IIId	Cl	Ph ₂ PC ₂ H ₄ PPh ₂	o-CH2C6H4CN	this work	
IVa	Cl	Ph2PC3H6PPh2	CH ₂ CN	16	
Va			n-C ₃ H ₆ CN	this work	
Vc			n-C3H6CN	this work	
Vla			CH ₂ CN	16	
VIb			C2H4CN	this work	
VIc			n-C3H6CN	this work	

Compound	Alkyl	x	L-L	YCN	References
VIIa			cis-Ph ₂ PCH=CHPPh ₂	CH ₂ CN	16
VIIb			cis-Ph2PCH=CHPPh2	C2H4CN	this work
VIIe			cis-Ph2PCH=CHPPh2	n-C3H6CN	this work
VIId			cis-Ph2PCH=CHPPh2	o-CH2C6H4CN	this work
VIIIa			Ph2PC2H4PPh2	CH ₂ CN	16
VIIIb			Ph2PC2H4PPh2	C ₂ H ₄ CN	this work
VIIIc			Ph2PC2H4PPh2	n-C3H6CN	this work
VIIId			Ph2PC2H4PPh2	o-CH2C6H4CN	this work
IXa			Ph2PC3H6PPh2	CH ₂ CN	16
IXc				n-C ₃ H ₆ CN	this work
Xa	C ₂ H ₅	CH ₂ CH ₂ CN		CH ₂ CN	this work
Xc	C ₂ H ₅	CH ₂ CH ₂ CN		n-C ₃ H ₆ CN	this work
XIa	C ₂ H ₅	C7H9(norbornenyl)		CH ₂ CN	this work
XIc	C ₂ H ₅	C7H9(norbornenyl)		n-C3H6CN	this work
XIIa	C ₂ H ₅	CH ₂ CH=CH ₂		CH ₂ CN	this work
XIIIa	C ₂ H ₅	CH ₂ CH=CH ₂		CH ₂ CN	this work

dNA H ^t) ³¹ P NMR SPECTRAL DATA FOR CYANC	ALKYL COMPL	EXES OF PL/	ATINUM(II)				
Compley	×	δ(CH2) ^a (ppm)	δ(H) (ppm)	1 <i>J</i> (Р(H) (Нz)	² J(PPtH) (Hz)	б (р) ^b (рип)	1J(PtP) (Hz)	² J(PP) (Hz)
41 QII	trans-PtCl(C ₂ H4CN)(PPh ₃)2 PtBr(C ₂ H4CN)(Ph ₂ PCH=CHPPh ₂)	1.2m 1.9m c				27.3s 49.3d	$\frac{3124}{4169}d$	10
2						55.3d	1757	i.
llc	PtBr(n-C ₃ H ₆ CN)(Ph ₂ PCH=CHPPh ₂)	1.57m				49.1d	4734	10
1716		1.98m	120 2	603	0	55,3d 24 42	1679	
VIC	trans-FtM(n-CaHeON)(PPha)>	0.4-1.1bm	-4.51t	0.36 636	18	35.1s	3160	
VIIb	PtH(C ₂ H ₄ CN)(Ph ₂ PCH=CHPPh ₂)	2.36m	-0.89dd	1276	201 trans	60,6d	1771 ^e trans	13
	t				18 cis	63.4d	1.766 cis	
VIIc	PtH(n-C ₃ H ₆ CN)(Ph ₂ PCH=CHPPh ₂)	1.9m	—1,66 dd	1290	201 trans	60.2d	1806 trans	15
VIId	PtH(o-CH ₂ C ₆ H ₄ CN)(Ph ₂ PCH=CHPPh ₂)	3.45dd ^f	-1,42dd	1217	204 trans	61.2d	1759 trans	14
					18 cis	59.5d	1974 cis	
VIIIb	PtH(C ₂ J ₄ CH)(Ph ₂ PC ₂ H ₄ PPh ₂)	2.33m	-1.14dd	1251	195 trans	49.0bs	1973 trans	<2
					16 cis	52.6bs	1806 cis	
olllv	PtH(n-C ₃ H ₆ CN)(Ph ₂ PC ₂ H ₄ PPh ₂)	2.1m	—1 ,07dd	1260	195 trans	48,2bs	1824 trans	<2
) eeoo o		1011	1 / 615	501.20	1/12 218	c \
VIIIO	PtH(o-CH2C6H4CN)(Pn2PC2H4PPn2)	3,3300 ~	-1,52dd	GRII	1 n nuns	43,805	1771 trans	22
\$		1 11.000			T / C18	49,90S	1500	ç
Ха	cis-ft(UH2UN)(UH2UH3)(FFn3)2	1.4Dm 0.0bm/CU_1				24.00 06.04	1603	01
۸'n	vcdPhone Conversion of the state of the stat	0.9000(Cn3) 1 55hm				20,9d	2002	œ
2		0.8bm(CH ₃)				26.6d	1872	0
XIa	cis-Pt(CH ₂ CN)(CH ₂ CH ₂ CN)(PPh ₃) ₂	1.6bm				21.1d	2220	15
		1.1bm				22 . 0d	2290	
XIc	cis-Pt(n-C ₃ H ₆ CN)(CH ₂ CH ₂ CN)(PPh ₃) ₂	1.5bm				23.3d	1653	11
XIIa	cis-Pt(CH ₂ CN)(C ₂ H ₀)(Ph ₃)>	1.4dd h				24.7d 23.9d	24451565	12
		C ₇ H ₉ ¹				27.2d	2636	
XIIIa	cis-Pt(CH ₂ CN)(CH ₂ CH=CH ₂)(PPh ₃) ₂	1.5m				23.5	1850	~10
		4.4m ^j				25,3	2570	
a In CD; (externa 2J(PtC 12 Hz (f those of	2 ^{Cl} ₂ at room temperature; TMS as internal s u reference), ^c δ (CH=) 6.8m ppm. ^d P trans iH) 105 Hz; ³ J(PPtCH) 11 Hz (frans), 7.3 Hz 'rans), 9 Hz (cis), ¹ δ (H(1), H(4)) 5.2m, δ (H(Stille [24], ¹ δ (CH=CH ₂).	andard, ^b In CD ₂ to Br. ^c P <i>trans</i> to (c(s), ^g ² J(PtCH) 2), H(3)) 6.8m, δ	Cl ₂ at room t H: this reson 104 Hz; ³ J(P) (H(5)), H(7))	emperature; a ance is split li PtCH) 11 Hz 1.6m, ⁶ (H(6)	positive sign (nto a doublet ' (trans), 8 Hz () 1.1m ppm (t	denotes a reson with 2 <i>J</i> ~200 F <i>cis</i>); § (C ₂ H4) 2 he assignments	ance at lower field th Is in the undecouple 1,1 m. ^{II} 2J(PtCH) 94 1 for the norbornenyl	an 85% H3PO4 1 spectrum. Hz; ³ J(PPtCH) moiety follow

ł

;

110

TABLE 1

TABLE 2

ANALYTICAL AND IR SPECTRAL DATA

Complex	M.p. (dec.) (°C)	Analysis (found (calcd.) (%))				$\nu(CN)^{d}$	Others	
		С	н	N	Р			
Гь	211-213	57.81 ^a	4.30	1.67	7.66	2248s	278m	v(PtCl)
		(57.89)	(4.23)	(1.73)	(6.66)			
IIb	235-236	48.17 ^b	3.65	1.99	8.29	2238s	189s	v(PtBr) ^e
		(48.08)	(3.62)	(1.92)	(8.55)			
IIc	117-178	49.01 ^c	3.94	1.79		2235s	188s	v(PtBr) ^e
		(48.73)	(3.82)	(1.89)				
VIb	168-170	60.56	4.62	1.79	8.05	2238s	2019s	v(PtH)
		(60.46)	(4.55)	(1.81)	(8.00)		800m	δ(PtH)
VIc	153-154	60.79	4.75	1.89	7.48	2245s	1950s	v(PtH)
		(60,91)	(4.73)	(1.78)	(7.85)		827m	δ(PtH)
VIIb	149-150	53.90	4.25	2.08	9.38	2233s	1990s	ν(PtH)
		(53.87)	(4.21)	(2.17)	(9.58)			
VIIc	134-135	54.45	4.42	2.14	8.99	2245s	1942s	ν(PtH)
		(54.54)	(4.42)	(2.12)	(9.38)			
VIId	165-170	57.50	4.11	2.00	8.69	221 8s	1988s	ν (PtH)
		(57.63)	(4.12)	(1.98)	(8.74)			
VIIIb	138-142	53.57	4.56	2.24	9.42	2226s	1967s	$\nu(PtH)$
		(53.70)	(4.51)	(2.16)	(9.55)			
VIIIc	130-131	54.31	4.75	2.03	9.18	2240s	1995s	ν (PtH)
		(54.38)	(4.72)	(2.11)	(9.35)			
VIIId	180-183	57.06	4.33	2.01	8.52	2216s	2000s	$\nu(PtH)$
		(57.46)	(4.04)	(1.97)	(8.72)			• •
Xa	146 - 147	60.88	4.99	1.77	7.20	2202s	547s ^f	
		(60.90)	(4.73)	(1.77)	(7.85)			
Xe	139—141	60.68	5.00	1.54	7.62	2248s	547a	
		(61.74)	(5.06)	(1.71)	(7.58)			
XIa	181 - 182	58.98	4.45	3.20	7.43	2208s	544m	
		(60.51)	(4.46)	(3.44)	(7.61)	2218s		
XIc	158 - 159	60.48	4.99	3.24	6.80	2247s	544m	
		(61.35)	(4.79)	(3.33)	(7.36)	2199s		
XIIa	173-175	63.21	4.77	1.66	7.04	2208s	1555w	ν(C=C)
		(63.37)	(4.85)	(1.64)	(7.26)			
XIIIa	144-147	61.15	4.77	1.58		2200s	1608m	ν (C=C)
		(61.49)	(4.65)	(1.75)	-			- /

^a Cl, 4.48 (4.38)%. ^b Br, 11.29 (11.03)%. ^c Br, 10.98 (10.81)%. ^d IR in Nujol mulls. ^e Raman of powdered sample. ^f Mastin's rule [25]: the presence of a band around 550 cm⁻¹ is indicative of a *cis*-geometry for bis(triphenylphosphine)platinum(II) complexes.

to the sequence of increasing *trans*-influence $Cl < P < CH_2CN < C_2H_4CN < n-C_3H_6CN$ and to that of decreasing *cis*-influence $CH_2CN > C_2H_4CN > n-C_3H_6CN$. The *cis*-influence is ca. 10% of that of the *trans*-influence, as judged by the magnitudes of the corresponding ΔJ 's. (These sequences have now been verified over more than 40 cyanoalkyl complexes.) The inversion of *cis*- and *trans*-influence sequences has been noted for other ligands [21–23].

The kinetics of the insertion reaction 1 were studied by preparing on a vacuum

trans-PtH(C₃H₆CN)(PPh₃)₂ + CH₂=CHCN \rightarrow cis-Pt(C₃H₆CN)(CH₂CH₂CN)(PPh₃)₂

(VIc)

(XIc) (1)

line a series of sealed NMR tubes containing VIc and acrylonitrile in varying

Fig. 1. Reaction 1 in benzene- d_6 at 30°C. [VIc] 0.095 *M*. (The white and black dots refer to the integration of the ³¹P signals of VIc and XIc, respectively).

Fig. 2. (a) ${}^{31}P{{}^{1}H}FT$ NMR spectrum of VIc in CD₂Cl₂/CHClF₂ at $-130^{\circ}C$ (PEt₃ as external reference). (b) Spectrum of a solution of VIc and PPh₃ (molar ratio 1/1) in CD₂Cl₂/CHClF₂ at $-130^{\circ}C$. ([VIc]₀ 0.0634 *M*; [PPh₃]₀ 0.0629 *M*).

molar ratio in benzene- d_6 , and following the reaction at $30.0 \pm 0.5^{\circ}$ C by periodically integrating the respective ³¹P signals of the starting hydrido complex and the final product XIc. The reaction is of first order for the hydrido complex and for the olefin (Fig. 1):

$$-d[VIc]/dt = +d[XIc]/dt = k[VIc][CH_2=CHCN]$$
 with $k = 2.1 \times 10^{-3} M^{-1} s^{-1}$

In the case of platinum(II), an associative type of mechanism is thought to involve a five coordinate intermediate (or transition state) [26]. We tried to get spectral evidence of five-coordinated species in solutions of VIc with an added π -acceptor ligand (PPh₃ or CH₂=CHCN):

1. With PPh₃: CHClF₂ was distilled into an NMR tube containing VIc and PPh₃ (molar ratio 1/1) in CD₂Cl₂. A clear solution was obtained by warming to -40°C. Its ³¹P{¹H} NMR spectrum indicated that a fast exchange of phosphine was taking place at that temperature. However, a comparison of its spectrum at -130°C with that of VIc revealed the presence of a new complex (Fig. 2). Knowing the total concentration of platinum ($c_{\rm M} = 0.0634 M$) and of PPh₃ ($c_{\rm L} = 0.190 M$) and the areas of the ³¹P signals, the concentration of uncoordinated phosphine is given by $[L]_{\rm free} = c_{\rm L} cs_3/(s_1 + s_2 + s_3) = 0.03 M$ where s_1 , s_2 and s_3 are the relative areas of the signals of VIc, the new species and PPh₃, respectively (the experimental ratios $s_1/s_2/s_3$ are 47/95/27). Thus, the mean number of PPh₃ groups coordinated to the metal is $\bar{n} = (c_{\rm L} - [L]_{\rm free})/$

 $c_{\rm m} = 2.51$. As $\frac{1}{\overline{n}} = \frac{s_1}{2(s_1 + s_2)} + \frac{s_2}{x(s_1 + s_2)} = 0.4$, the number x of coordinated PPh₃

groups in the new species was found to be 2.9 ± 0.2 . The ¹H NMR spectrum of the same solution at -80° C presents in the hydride region a single sharp resonance with two satellites due to ¹J(PtH). The loss of the ³¹P—¹H coupling indicates a rapid exchange of phosphine. On lowering the temperature to -110° C, the sharp resonance at -4.5 ppm corresponding to the hydride of VIc (cf. Table 1) broadens and undergoes an upfield shift to -6.3 ppm. (It was not possible to block the exchange of PPh₃ by further lowering of the temperature as VIc is insoluble in pure CHClF₂.) If VIc were the sole species exchanging with free PPh₃, the resonance of the hydride would maintain a constant chemical shift on lowering of the temperature. As this is not the case, we conclude that the new species observed in the ³¹P NMR spectrum contains a Pt—H bond in addition to three magnetically equivalent PPh₃ groups, and exchanges with free PPh₃ in equilibrium 2.

The choice of an axial position of the trigonal bipyramid for the hydride is also in accord with observations made by Jesson et al. [27] for the system HML_3^+/L (M = Ni, Pd, Pt; L = PEt₃), and by Tolman et al. [28] for $HNiL_3CN$ (L = PR₃, P(OR)₃).

2. With $CH_2=CHCN$: addition of acrylonitrile to a solution of VIc in CD_2Cl_2 at $-70^{\circ}C$ (molar ratio 5/1) causes a broadening of the ³¹P signals of VIc, suggesting an exchange process of phosphine. (At this temperature, reaction 1 itself is too slow for XIc to be formed in any significant amount in the time of measurement.) However, the ³¹P NMR spectrum of a solution of VIc and acrylonitrile (molar ratio 1/1) in $CD_2Cl_2/CHCIF_2$ at $-120^{\circ}C$ did not show any signals attributable to the substitution product $PtH(C_3H_6CN)(CH_2=CHCN)(PPh_3)$. If the substitution of PPh₃ by acrylonitrile takes place in a fast preequilibrium prior to the rate-determining step of the insertion, an excess of PPh₃ should decrease the rate of the reaction. By monitoring reaction 1 by ³¹P NMR in two solutions containing VIc + $CH_2=CHCN$ (1/10) and VIc + $CH_2=CHCN$ + PPh₃ (1/10/2), we found that the rate constant was, indeed, smaller in the presence of added PPh₃. Scheme 2 takes into account the preceding observations.

The cis hydrido complexes VIIc or VIIIc, which contain a bidentate diphosphine, did not react with olefins under the conditions used for VIc or under more drastic conditions. In Scheme 2, the formation of the five-coordinated intermediate (or transition state) would indeed be disfavoured, as the metal—carbon bond tends to be in an axial position [28] and that of the four-coordinated substitution product would be entropically disfavoured as one tooth of the bidentate ligand has to become loose.

Experimental

The spectroscopic techniques were described earlier [18]; W. Manser (Mikrolabor ETH, Zürich) and the Institute of Organic Chemistry (University of Padua) carried out the microanalyses. References for the preparation of complexes reported earlier are given in Scheme 1.

Preparation of complexes

trans-PtCl(C_2H_4CN)(PPh₃)₂ (IIb). AgCl (2.7 g) was added to a solution of trans-PtBr(C_2H_4CN)(PPh₃)₂ (3.0 g) [18] in dichloromethane/acetone (4/1, 80 ml) and the suspension stirred at room temperature for 24 h. The excess of AgCl and the AgBr were filtered off and the solution concentrated to 20 ml. The white complex was precipitated by adding ethanol, and recrystallized from dichloromethane/ether. Yield 92%.

 $PtBr(C_2H_4CN)(Ph_2PCH=CHPPh_2)$ (IIb) and $PtBr(C_2H_4CN)(Ph_2PC_2H_4PPh_2)$ (IIIb). cis-Bis(diphenylphosphino)ethene (1.4 g) or 1,2-bis(diphenylphosphino)ethane (0.9 g) was added in small portions to warm solution of *trans*-PtBr-(C_2H_4CN)(PPh_3)₂ (2.0 and 1.7 g, respectively) in benzene (30 ml), and the solution stirred at 50°C for 30 min. After cooling, diethyl ether (100 ml) was added and the suspension stirred overnight. The solid product was filtered off and redissolved in dichloromethane; a small quantity of PtBr₂(L--L) formed remained insoluble and was filtered off. The volume of the filtrate was reduced to 50% and methanol added. The rest of dichloromethane was slowly distilled off and the methanolic suspension filtered to leave a white powder. Yields 88 and 85%, respectively.

PtBr($n-C_3H_6CN$)(Ph₂PCH=CHPPh₂) (IIc), PtBr($n-C_3H_6CN$)(Ph₂PC₂H₄PPh₂) (IIIc) and PtCl($o-CH_2C_6H_4CN$)(Ph₂PC₂H₄PPh₂) (IIId). The same method was used but with the following starting materials; IIc and IIIc: trans-PtBr($n-C_3H_6CN$)-(Ph₃)₂ [18] (2 and 1.7 g, respectively) and cis-Ph₂PCH=CHPPh₂ (1.4 g) or Ph₂PC₂H₄PPh₂ (0.94 g) in benzene (20 ml, 50°C, 30 min and 50 ml, 25°C, 18 h, respectively). Yields 86 and 88%. IIId: trans-PtCl($o-CH_2C_6H_4CN$)(PPh₃)₂ [19] (0.9 g) and Ph₂PC₂H₄PPh₂ (0.5 g) in benzene (20 ml, 50°C, 40 min). Yield 82%. For PtCl($o-CH_2C_6H_4CN$)(Ph₂PCH=CHPPh₃) (IId), see [19].

 $trans-PtH(C_2H_4CN)(PPh_3)_2$ (VIb). A solution of NaBH₄ (0.3 g) in ethanol (60 ml) was added over a period of 12 h to a stirred solution of $trans-PtCl-(C_2H_4CN)(PPh_3)_2$ [19] in dichloromethane (30 ml) at -10°C. The mixture was kept overnight at -25°C and dichloromethane was then distilled off under vacuum (15 Torr). The white product was precipitated from the ethanolic solution by adding water, and recrystallized from dichloromethane/ether. Yield 35%.

trans-PtH($n-C_3H_6CN$)(PPh₃)₂ (VIc). A solution of NaOH (0.4 g) in methanol (5 ml) was added to a suspension of trans-[Pt($n-C_3H_6CN$)(PPh₃)₂]_m(BF₄)_m (1 g) [18] in methanol (50 ml) and the mixture stirred at 50°C for 90 min. The white product slowly precipitated. The crude complex was filtered off after reduction of the volume of methanol by 50%, and was washed thoroughly with water then with methanol, and recrystallized from dichloromethane/methanol. Yield 70%. Upon monitoring the reaction by IR, we noticed that an hydroxo complex was formed before the hydride [16].

 $PtH(C_2H_4CN)(Ph_2PCH=CHPPh_2)$ (VIIb), $PtH(C_2H_4CN)(Ph_2PC_2H_4PPh_2)$ (VIIb), $PtH(n-C_3H_6CN)(Ph_2PCH=CHPPh_2)$ (VIIc), $PtH(n-C_3H_6CN)(Ph_2PC_2H_4PPh_2)$ (VIIIc), $PtH(o-CH_2C_6H_4CN)(Ph_2PCH=CHPPh_2)$ (VIId) and $PtH(o-CH_2C_6H_4CN)(Ph_2PC_2H_4-PPh_2)$ (VIIId). A typical procedure is given for VIIIb: a solution of NaBH₄ (0.08 g) in ethanol (50 ml) was added during 40 min to a solution of PtBr(C_2H_4CN)- $(Ph_2PC_2H_4PPh_2)$ (0.36 g) in ethanol (100 ml), which turned pale yellow. Water (3 ml) was added and ethanol distilled off until the hydride began to precipitate; the temperature being kept below 30°C. The suspension was stirred for 30 min in an ice bath then filtered, and the white hydrido complex recrystallized from dichloromethane/methanol. In the case of VIIId, the ethanolic solution was heated at 50°C for 10 min before adding water. Yields between 30% (VIIIb) and 70% (VIIId).

 $cis-Pt(CH_2CN)(C_2H_5)(PPh_3)_2$ (Xa) and $cis-Pt(n-C_3H_6CN)(C_2H_5)(PPh_3)_2$ (Xc). A Pyrex test tube containing a solution of trans-PtH(CH₂CN)(PPh₃)₂ (1.2 g VIa [16]) or trans-PtH(n-C₃H₆CN)(PPh₃)₂ (1.7 g VIc) in THF (15 and 30 ml, respectively) was introduced into a stainless steel autoclave and the solution stirred under ethylene (25 atm) at room temperature for 20 h. Xa: the suspension of product formed was concentrated to 8 ml and methanol added to complete precipitation. The white dialkyl complex was filtered and recrystallized from dichloromethane/methanol. Yield 66%. Xc: the solution turned pale yellow and was concentrated to 6 ml. Diethyl ether (40 ml) was added and the suspension of product kept overnight at -25°C. Filtration yielded 0.89 g of dialkyl complex. A second crop of product (0.39 g) was obtained by adding pentane to the filtrate. Yield 80%. VIb was found to react in the same way with ethylene. No elimination products (alkanes or cyanoalkanes) were found on analysing the reaction mixture by GLC.

cis-Pt(CH₂CN)(C_2H_4CN)(PPh₃)₂ (XIa) and cis-Pt(n-C₃H₆CN)(C_2H_4CN)(PPh₃)₂ (XIc). A solution of trans-PtH(CH₂CN)(PPh₃)₂ (0.15 g) or trans-PtH(n-C₃H₆CN)-(PPh₃)₂ (0.5 g) and acrylonitrile (0.4 g) in benzene (6 and 15 ml, respectively) was stirred at 50°C for 15 h under nitrogen. The volume of the solution was reduced to 50% and methanol added. The bis(cyanoalkyl) complex started to crystallize on scratching the wall of the Pyrex flask with a glass rod, and was recrystallized from benzene/methanol. Yields 75 and 66%, respectively.

 $cis-Pt(CH_2CN)(C_7H_8)(PPh_3)_2$ (XIIa). A suspension of trans-PtH(CH₂CN)-(PPh₃)₂ (0.3 g) in norbornadiene (10 ml) was stirred at 70°C for 3 h under nitrogen. The suspension was filtered and the beige product redissolved in dichloromethane and treated with active carbon. The filtrate was evaporated to dryness and the residue was recrystallized from dichloromethane/methanol as colorless needles. Yield 90%.

cis-Pt(CH₂CN)(CH₂CH=CH₂)(PPh₃)₂ (XIIIa). A solution of trans-PtH(CH₂CN)-

 $(PPh_3)_2$ (0.2 g) in 1,2-dichloroethane (5 ml) was stirred under an atmosphere of allene at 60°C for 4 h. The white product was precipitated by adding n-hexane, filtered off and washed with n-hexane. Yield 62%.

The *cis*-hydrido complexes VIIa, VIIc and VIIIa, VIIIc did not react with ethylene or other olefins under similar or more drastic conditions.

Acknowledgements

This work was supported by the Consiglio Nazionale delle Ricerche (C.N.R., Roma) and by the Swiss National Science Foundation (grant No 2.780.77).

References

- 1 J. Chatt and B.L. Shaw, J. Chem. Soc., (1962) 5075; J. Chatt, R.S. Coffey, A. Gough and D.T. Thompson, J. Chem. Soc. A, (1968) 190.
- 2 H.C. Clark and H. Kurosawa, Inorg. Chem., 11 (1972) 1275; H.C. Clark, C.R. Jablonski, J. Halpern, A. Mantovani and T.A. Weil, Inorg. Chem., 13 (1974) 1541; H.C. Clark and C.R. Jablonski, ibid., 13 (1974) 2213.
- 3 A.J. Deeming, B.F.G. Johnson and J. Lewis, Chem. Commun., (1970) 598; J. Chem. Soc. Dalton, (1973) 1848.
- 4 P.M. Treichel, K.P. Wagner and R.W. Hess, Inorg. Chem., 12 (1973) 1471.
- 5 G. Bracher, P.S. Pregosin and L.M. Venanzi, 7th Internat. Conf. Organometal. Chem., Venice, 1975, p. 74.
- 6 M.H. Chisholm and H.C. Clark, Accounts Chem. Res., 6 (1973) 202; H.C. Clark and L.E. Manzer, J. Amer. Chem. Soc., 95 (1973) 3812; Inorg. Chem., 13 (1974) 1291; 1966; L.E. Manzer, ibid., 15 (1976) 2354.
- 7 R. Cramer and R.V. Lindsey, J. Amer. Chem. Soc., 88 (1966) 3534.
- 8 M.H. Chisholm and W.S. Johns, Inorg. Chem., 14 (1975) 1189.
- 9 P.E. Garrou and R.G. Heck, J. Amer. Chem. Soc., 98 (1976) 4115.
- 10 Y. Yamamoto and H. Yamazaki, Coord. Chem. Rev., 8 (1972) 225.
- 11 D.F. Christian, H.C. Clark and R.F. Stepaniak, J. Organometal. Chem., 112 (1976) 209.
- 12 A. Nakamura and S. Otsuka, J. Amer. Chem. Soc., 95 (1973) 7262.
- 13 B. Worniak, J.D. Ruddick and G. Wilkinson, J. Chem. Soc. A, (1971) 3116.
- 14 W. Beck, K. Schropp, C. Oetker, R. Schlodder and H.S. Smedal, Chem. Ber., 106 (1973) 2144.
- 15 R. Ros, R. Bataillard and R. Roulet, J. Organometal. Chem., 118 (1976) C53.
- 16 R. Ros, R.A. Michelin, R. Bataillard and R. Roulet, J. Organometal. Chem., 139 (1977) 355; idem, ibid., submitted for publication.
- 17 R.A. Michelin, U. Belluco and R. Ros, Inorg. Chim. Acta, 24 (1977) L33.
- 18 R. Ros, J. Renaud and R. Roulet, Helv. Chim. Acta, 58 (1975) 133.
- 19 R. Ros, J. Renaud and R. Roulet, J. Organometal. Chem., 87 (1975) 379.
- 20 K. Suzuki, H. Yamamoto and S. Kanie, J. Organometal. Chem., 73 (1974) 131.
- 21 F.H. Allen and A. Pidcock, J. Chem. Soc. A, (1968) 2700.
- 22 F.H. Allen and S.N. Sze, J. Chem. Soc. A, (1971) 2054.
- 23 M.J. Church and M.J. Mays, J. Chem. Soc. A, (1970) 1938.
- 24 J.K. Stille and R.A. Morgan, J. Amer. Chem. Soc., 88 (1966) 5135.
- 25 S.H. Mastin, Inorg. Chem., 13 (1974) 1003.
- 26 C.H. Lanford and H.B. Gray, Ligand Substitution Processes, W.A. Benjamin, New York, 1965.
- 27 A.D. English, P. Meakin and J.P. Jesson, J. Amer. Chem. Soc., 98 (1976) 422.
- 28 J.D. Druliner, A.D. English, J.P. Jesson, P. Meakin and C.A. Tolman, J. Amer. Chem. Soc., 98 (1976) 2156.